bad-apple/ch32_decoder/ssd1306.h

587 lines
12 KiB
C
Raw Normal View History

2024-04-12 22:26:24 +02:00
/*
* Single-File-Header for using SPI OLED
* 05-05-2023 E. Brombaugh
*/
#ifndef _SSD1306_H
#define _SSD1306_H
#include <stdint.h>
#include <string.h>
// comfortable packet size for this OLED
#define SSD1306_PSZ 32
// characteristics of each type
#if !defined(SSD1306_64X32) && !defined(SSD1306_128X32) && !defined(SSD1306_128X64)
#error "Please define the SSD1306_WXH resolution used in your application"
#endif
#ifdef SSD1306_64X32
#define SSD1306_W 64
#define SSD1306_H 32
#define SSD1306_FULLUSE
#define SSD1306_OFFSET 32
#endif
#ifdef SSD1306_128X32
#define SSD1306_W 128
#define SSD1306_H 32
#define SSD1306_OFFSET 0
#endif
#ifdef SSD1306_128X64
#define SSD1306_W 128
#define SSD1306_H 64
#define SSD1306_FULLUSE
#define SSD1306_OFFSET 0
#endif
/*
* send OLED command byte
*/
uint8_t ssd1306_cmd(uint8_t cmd)
{
ssd1306_pkt_send(&cmd, 1, 1);
return 0;
}
/*
* send OLED data packet (up to 32 bytes)
*/
uint8_t ssd1306_data(uint8_t *data, uint8_t sz)
{
ssd1306_pkt_send(data, sz, 0);
return 0;
}
#define SSD1306_SETCONTRAST 0x81
#define SSD1306_SEGREMAP 0xA0
#define SSD1306_DISPLAYALLON_RESUME 0xA4
#define SSD1306_DISPLAYALLON 0xA5
#define SSD1306_NORMALDISPLAY 0xA6
#define SSD1306_INVERTDISPLAY 0xA7
#define SSD1306_DISPLAYOFF 0xAE
#define SSD1306_DISPLAYON 0xAF
#define SSD1306_SETDISPLAYOFFSET 0xD3
#define SSD1306_SETCOMPINS 0xDA
#define SSD1306_SETVCOMDETECT 0xDB
#define SSD1306_SETDISPLAYCLOCKDIV 0xD5
#define SSD1306_SETPRECHARGE 0xD9
#define SSD1306_SETMULTIPLEX 0xA8
#define SSD1306_SETLOWCOLUMN 0x00
#define SSD1306_SETHIGHCOLUMN 0x10
#define SSD1306_SETSTARTLINE 0x40
#define SSD1306_MEMORYMODE 0x20
#define SSD1306_COLUMNADDR 0x21
#define SSD1306_PAGEADDR 0x22
#define SSD1306_COMSCANINC 0xC0
#define SSD1306_COMSCANDEC 0xC8
#define SSD1306_CHARGEPUMP 0x8D
#define SSD1306_EXTERNALVCC 0x1
#define SSD1306_SWITCHCAPVCC 0x2
#define SSD1306_TERMINATE_CMDS 0xFF
/* choose VCC mode */
#define SSD1306_EXTERNALVCC 0x1
#define SSD1306_SWITCHCAPVCC 0x2
// #define vccstate SSD1306_EXTERNALVCC
#define vccstate SSD1306_SWITCHCAPVCC
// OLED initialization commands for 128x32
const uint8_t ssd1306_init_array[] =
{
SSD1306_DISPLAYOFF, // 0xAE
SSD1306_SETDISPLAYCLOCKDIV, // 0xD5
0x80, // the suggested ratio 0x80
SSD1306_SETMULTIPLEX, // 0xA8
#ifdef SSD1306_64X32
0x1F, // for 64-wide displays
#else
0x3F, // for 128-wide displays
#endif
SSD1306_SETDISPLAYOFFSET, // 0xD3
0x00, // no offset
SSD1306_SETSTARTLINE | 0x0, // 0x40 | line
SSD1306_CHARGEPUMP, // 0x8D
0x14, // enable?
SSD1306_MEMORYMODE, // 0x20
0x00, // 0x0 act like ks0108
SSD1306_SEGREMAP | 0x1, // 0xA0 | bit
SSD1306_COMSCANDEC,
SSD1306_SETCOMPINS, // 0xDA
0x12, //
SSD1306_SETCONTRAST, // 0x81
0x8F,
SSD1306_SETPRECHARGE, // 0xd9
0xF1,
SSD1306_SETVCOMDETECT, // 0xDB
0x40,
SSD1306_DISPLAYALLON_RESUME, // 0xA4
SSD1306_NORMALDISPLAY, // 0xA6
SSD1306_DISPLAYON, // 0xAF --turn on oled panel
SSD1306_TERMINATE_CMDS // 0xFF --fake command to mark end
};
// the display buffer
uint8_t ssd1306_buffer[SSD1306_W * SSD1306_H / 8];
/*
* set the buffer to a color
*/
void ssd1306_setbuf(uint8_t color)
{
memset(ssd1306_buffer, color ? 0xFF : 0x00, sizeof(ssd1306_buffer));
}
#ifndef SSD1306_FULLUSE
/*
* expansion array for OLED with every other row unused
*/
const uint8_t expand[16] =
{
0x00, // 0000 0000
0x02, // 0000 0010
0x08, // 0000 1000
0x0a, // 0000 1010
0x20, // 0010 0000
0x22, // 0010 0010
0x28, // 0010 1000
0x2a, // 0010 1010
0x80, // 1000 0000
0x82, // 1000 0010
0x88, // 1000 1000
0x8a, // 1000 1010
0xa0, // 1010 0000
0xa2, // 1010 0010
0xa8, // 1010 1000
0xaa, // 1010 1010
};
#endif
/*
* Send the frame buffer
*/
void ssd1306_refresh(void)
{
uint16_t i;
ssd1306_cmd(SSD1306_COLUMNADDR);
ssd1306_cmd(SSD1306_OFFSET); // Column start address (0 = reset)
ssd1306_cmd(SSD1306_OFFSET + SSD1306_W - 1); // Column end address (127 = reset)
ssd1306_cmd(SSD1306_PAGEADDR);
ssd1306_cmd(0); // Page start address (0 = reset)
ssd1306_cmd(7); // Page end address
#ifdef SSD1306_FULLUSE
/* for fully used rows just plow thru everything */
for (i = 0; i < sizeof(ssd1306_buffer); i += SSD1306_PSZ)
{
/* send PSZ block of data */
ssd1306_data(&ssd1306_buffer[i], SSD1306_PSZ);
}
#else
/* for displays with odd rows unused expand bytes */
uint8_t tbuf[SSD1306_PSZ], j, k;
for (i = 0; i < sizeof(ssd1306_buffer); i += 128) // for each page
{
/* low nybble */
for (j = 0; j < 128; j += SSD1306_PSZ)
{
for (k = 0; k < SSD1306_PSZ; k++)
tbuf[k] = expand[ssd1306_buffer[i + j + k] & 0xf];
/* send PSZ block of data */
ssd1306_data(tbuf, SSD1306_PSZ);
}
/* high nybble */
for (j = 0; j < 128; j += SSD1306_PSZ)
{
for (k = 0; k < SSD1306_PSZ; k++)
tbuf[k] = expand[(ssd1306_buffer[i + j + k] >> 4) & 0xf];
/* send PSZ block of data */
ssd1306_data(tbuf, SSD1306_PSZ);
}
}
#endif
}
/*
* plot a pixel in the buffer
*/
void ssd1306_drawPixel(uint8_t x, uint8_t y, uint8_t color)
{
uint16_t addr;
/* clip */
if (x >= SSD1306_W)
return;
if (y >= SSD1306_H)
return;
/* compute buffer address */
addr = x + SSD1306_W * (y / 8);
/* set/clear bit in buffer */
if (color)
ssd1306_buffer[addr] |= (1 << (y & 7));
else
ssd1306_buffer[addr] &= ~(1 << (y & 7));
}
/*
* plot a pixel in the buffer
*/
void ssd1306_xorPixel(uint8_t x, uint8_t y)
{
uint16_t addr;
/* clip */
if (x >= SSD1306_W)
return;
if (y >= SSD1306_H)
return;
/* compute buffer address */
addr = x + SSD1306_W * (y / 8);
ssd1306_buffer[addr] ^= (1 << (y & 7));
}
/*
* draw a an image from an array, directly into to the display buffer
* the color modes allow for overwriting and even layering (sprites!)
*/
void ssd1306_drawImage(uint8_t x, uint8_t y, const unsigned char *input, uint8_t width, uint8_t height, uint8_t color_mode)
{
uint8_t x_absolute;
uint8_t y_absolute;
uint8_t pixel;
uint8_t bytes_to_draw = width / 8;
uint16_t buffer_addr;
for (uint8_t line = 0; line < height; line++)
{
y_absolute = y + line;
if (y_absolute >= SSD1306_H)
{
break;
}
// SSD1306 is in vertical mode, yet we want to draw horizontally, which necessitates assembling the output bytes from the input data
// bitmask for current pixel in vertical (output) byte
uint8_t v_mask = 1 << (y_absolute & 7);
for (uint8_t byte = 0; byte < bytes_to_draw; byte++)
{
uint8_t input_byte = input[byte + line * bytes_to_draw];
for (pixel = 0; pixel < 8; pixel++)
{
x_absolute = x + 8 * (bytes_to_draw - byte) + pixel;
if (x_absolute >= SSD1306_W)
{
break;
}
// looking at the horizontal display, we're drawing bytes bottom to top, not left to right, hence y / 8
buffer_addr = x_absolute + SSD1306_W * (y_absolute / 8);
// state of current pixel
uint8_t input_pixel = input_byte & (1 << pixel);
switch (color_mode)
{
case 0:
// write pixels as they are
ssd1306_buffer[buffer_addr] = (ssd1306_buffer[buffer_addr] & ~v_mask) | (input_pixel ? v_mask : 0);
break;
case 1:
// write pixels after inversion
ssd1306_buffer[buffer_addr] = (ssd1306_buffer[buffer_addr] & ~v_mask) | (!input_pixel ? v_mask : 0);
break;
case 2:
// 0 clears pixel
ssd1306_buffer[buffer_addr] &= input_pixel ? 0xFF : ~v_mask;
break;
case 3:
// 1 sets pixel
ssd1306_buffer[buffer_addr] |= input_pixel ? v_mask : 0;
break;
case 4:
// 0 sets pixel
ssd1306_buffer[buffer_addr] |= !input_pixel ? v_mask : 0;
break;
case 5:
// 1 clears pixel
ssd1306_buffer[buffer_addr] &= input_pixel ? ~v_mask : 0xFF;
break;
}
}
#if SSD1306_LOG_IMAGE == 1
printf("%02x ", input_byte);
#endif
}
#if SSD1306_LOG_IMAGE == 1
printf("\n\r");
#endif
}
}
/*
* fast vert line
*/
void ssd1306_drawFastVLine(uint8_t x, uint8_t y, uint8_t h, uint8_t color)
{
// clipping
if ((x >= SSD1306_W) || (y >= SSD1306_H))
return;
if ((y + h - 1) >= SSD1306_H)
h = SSD1306_H - y;
while (h--)
{
ssd1306_drawPixel(x, y++, color);
}
}
/*
* fast horiz line
*/
void ssd1306_drawFastHLine(uint8_t x, uint8_t y, uint8_t w, uint8_t color)
{
// clipping
if ((x >= SSD1306_W) || (y >= SSD1306_H))
return;
if ((x + w - 1) >= SSD1306_W)
w = SSD1306_W - x;
while (w--)
{
ssd1306_drawPixel(x++, y, color);
}
}
/*
* abs() helper function for line drawing
*/
int16_t gfx_abs(int16_t x)
{
return (x < 0) ? -x : x;
}
/*
* swap() helper function for line drawing
*/
void gfx_swap(uint16_t *z0, uint16_t *z1)
{
uint16_t temp = *z0;
*z0 = *z1;
*z1 = temp;
}
/*
* Bresenham line draw routine swiped from Wikipedia
*/
void ssd1306_drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint8_t color)
{
int16_t steep;
int16_t deltax, deltay, error, ystep, x, y;
/* flip sense 45deg to keep error calc in range */
steep = (gfx_abs(y1 - y0) > gfx_abs(x1 - x0));
if (steep)
{
gfx_swap(&x0, &y0);
gfx_swap(&x1, &y1);
}
/* run low->high */
if (x0 > x1)
{
gfx_swap(&x0, &x1);
gfx_swap(&y0, &y1);
}
/* set up loop initial conditions */
deltax = x1 - x0;
deltay = gfx_abs(y1 - y0);
error = deltax / 2;
y = y0;
if (y0 < y1)
ystep = 1;
else
ystep = -1;
/* loop x */
for (x = x0; x <= x1; x++)
{
/* plot point */
if (steep)
/* flip point & plot */
ssd1306_drawPixel(y, x, color);
else
/* just plot */
ssd1306_drawPixel(x, y, color);
/* update error */
error = error - deltay;
/* update y */
if (error < 0)
{
y = y + ystep;
error = error + deltax;
}
}
}
/*
* draws a circle
*/
void ssd1306_drawCircle(int16_t x, int16_t y, int16_t radius, int8_t color)
{
/* Bresenham algorithm */
int16_t x_pos = -radius;
int16_t y_pos = 0;
int16_t err = 2 - 2 * radius;
int16_t e2;
do
{
ssd1306_drawPixel(x - x_pos, y + y_pos, color);
ssd1306_drawPixel(x + x_pos, y + y_pos, color);
ssd1306_drawPixel(x + x_pos, y - y_pos, color);
ssd1306_drawPixel(x - x_pos, y - y_pos, color);
e2 = err;
if (e2 <= y_pos)
{
err += ++y_pos * 2 + 1;
if (-x_pos == y_pos && e2 <= x_pos)
{
e2 = 0;
}
}
if (e2 > x_pos)
{
err += ++x_pos * 2 + 1;
}
} while (x_pos <= 0);
}
/*
* draws a filled circle
*/
void ssd1306_fillCircle(int16_t x, int16_t y, int16_t radius, int8_t color)
{
/* Bresenham algorithm */
int16_t x_pos = -radius;
int16_t y_pos = 0;
int16_t err = 2 - 2 * radius;
int16_t e2;
do
{
ssd1306_drawPixel(x - x_pos, y + y_pos, color);
ssd1306_drawPixel(x + x_pos, y + y_pos, color);
ssd1306_drawPixel(x + x_pos, y - y_pos, color);
ssd1306_drawPixel(x - x_pos, y - y_pos, color);
ssd1306_drawFastHLine(x + x_pos, y + y_pos, 2 * (-x_pos) + 1, color);
ssd1306_drawFastHLine(x + x_pos, y - y_pos, 2 * (-x_pos) + 1, color);
e2 = err;
if (e2 <= y_pos)
{
err += ++y_pos * 2 + 1;
if (-x_pos == y_pos && e2 <= x_pos)
{
e2 = 0;
}
}
if (e2 > x_pos)
{
err += ++x_pos * 2 + 1;
}
} while (x_pos <= 0);
}
/*
* draw a rectangle
*/
void ssd1306_drawRect(uint8_t x, uint8_t y, uint8_t w, uint8_t h, uint8_t color)
{
ssd1306_drawFastVLine(x, y, h, color);
ssd1306_drawFastVLine(x + w - 1, y, h, color);
ssd1306_drawFastHLine(x, y, w, color);
ssd1306_drawFastHLine(x, y + h - 1, w, color);
}
/*
* fill a rectangle
*/
void ssd1306_fillRect(uint8_t x, uint8_t y, uint8_t w, uint8_t h, uint8_t color)
{
uint8_t m, n = y, iw = w;
/* scan vertical */
while (h--)
{
m = x;
w = iw;
/* scan horizontal */
while (w--)
{
/* invert pixels */
ssd1306_drawPixel(m++, n, color);
}
n++;
}
}
/*
* invert a rectangle in the buffer
*/
void ssd1306_xorrect(uint8_t x, uint8_t y, uint8_t w, uint8_t h)
{
uint8_t m, n = y, iw = w;
/* scan vertical */
while (h--)
{
m = x;
w = iw;
/* scan horizontal */
while (w--)
{
/* invert pixels */
ssd1306_xorPixel(m++, n);
}
n++;
}
}
/*
* initialize I2C and OLED
*/
uint8_t ssd1306_init(void)
{
// pulse reset
ssd1306_rst();
// initialize OLED
uint8_t *cmd_list = (uint8_t *)ssd1306_init_array;
while (*cmd_list != SSD1306_TERMINATE_CMDS)
{
if (ssd1306_cmd(*cmd_list++))
return 1;
}
// clear display
ssd1306_setbuf(0);
ssd1306_refresh();
return 0;
}
#endif