/* * Single-File-Header for using SPI OLED * 05-05-2023 E. Brombaugh */ #ifndef _SSD1306_H #define _SSD1306_H #include #include // comfortable packet size for this OLED #define SSD1306_PSZ 32 // characteristics of each type #if !defined(SSD1306_64X32) && !defined(SSD1306_128X32) && !defined(SSD1306_128X64) #error "Please define the SSD1306_WXH resolution used in your application" #endif #ifdef SSD1306_64X32 #define SSD1306_W 64 #define SSD1306_H 32 #define SSD1306_FULLUSE #define SSD1306_OFFSET 32 #endif #ifdef SSD1306_128X32 #define SSD1306_W 128 #define SSD1306_H 32 #define SSD1306_OFFSET 0 #endif #ifdef SSD1306_128X64 #define SSD1306_W 128 #define SSD1306_H 64 #define SSD1306_FULLUSE #define SSD1306_OFFSET 0 #endif /* * send OLED command byte */ uint8_t ssd1306_cmd(uint8_t cmd) { ssd1306_pkt_send(&cmd, 1, 1); return 0; } /* * send OLED data packet (up to 32 bytes) */ uint8_t ssd1306_data(uint8_t *data, uint8_t sz) { ssd1306_pkt_send(data, sz, 0); return 0; } #define SSD1306_SETCONTRAST 0x81 #define SSD1306_SEGREMAP 0xA0 #define SSD1306_DISPLAYALLON_RESUME 0xA4 #define SSD1306_DISPLAYALLON 0xA5 #define SSD1306_NORMALDISPLAY 0xA6 #define SSD1306_INVERTDISPLAY 0xA7 #define SSD1306_DISPLAYOFF 0xAE #define SSD1306_DISPLAYON 0xAF #define SSD1306_SETDISPLAYOFFSET 0xD3 #define SSD1306_SETCOMPINS 0xDA #define SSD1306_SETVCOMDETECT 0xDB #define SSD1306_SETDISPLAYCLOCKDIV 0xD5 #define SSD1306_SETPRECHARGE 0xD9 #define SSD1306_SETMULTIPLEX 0xA8 #define SSD1306_SETLOWCOLUMN 0x00 #define SSD1306_SETHIGHCOLUMN 0x10 #define SSD1306_SETSTARTLINE 0x40 #define SSD1306_MEMORYMODE 0x20 #define SSD1306_COLUMNADDR 0x21 #define SSD1306_PAGEADDR 0x22 #define SSD1306_COMSCANINC 0xC0 #define SSD1306_COMSCANDEC 0xC8 #define SSD1306_CHARGEPUMP 0x8D #define SSD1306_EXTERNALVCC 0x1 #define SSD1306_SWITCHCAPVCC 0x2 #define SSD1306_TERMINATE_CMDS 0xFF /* choose VCC mode */ #define SSD1306_EXTERNALVCC 0x1 #define SSD1306_SWITCHCAPVCC 0x2 // #define vccstate SSD1306_EXTERNALVCC #define vccstate SSD1306_SWITCHCAPVCC // OLED initialization commands for 128x32 const uint8_t ssd1306_init_array[] = { SSD1306_DISPLAYOFF, // 0xAE SSD1306_SETDISPLAYCLOCKDIV, // 0xD5 0x80, // the suggested ratio 0x80 SSD1306_SETMULTIPLEX, // 0xA8 #ifdef SSD1306_64X32 0x1F, // for 64-wide displays #else 0x3F, // for 128-wide displays #endif SSD1306_SETDISPLAYOFFSET, // 0xD3 0x00, // no offset SSD1306_SETSTARTLINE | 0x0, // 0x40 | line SSD1306_CHARGEPUMP, // 0x8D 0x14, // enable? SSD1306_MEMORYMODE, // 0x20 0x00, // 0x0 act like ks0108 SSD1306_SEGREMAP | 0x1, // 0xA0 | bit SSD1306_COMSCANDEC, SSD1306_SETCOMPINS, // 0xDA 0x12, // SSD1306_SETCONTRAST, // 0x81 0x8F, SSD1306_SETPRECHARGE, // 0xd9 0xF1, SSD1306_SETVCOMDETECT, // 0xDB 0x40, SSD1306_DISPLAYALLON_RESUME, // 0xA4 SSD1306_NORMALDISPLAY, // 0xA6 SSD1306_DISPLAYON, // 0xAF --turn on oled panel SSD1306_TERMINATE_CMDS // 0xFF --fake command to mark end }; // the display buffer uint8_t ssd1306_buffer[SSD1306_W * SSD1306_H / 8]; /* * set the buffer to a color */ void ssd1306_setbuf(uint8_t color) { memset(ssd1306_buffer, color ? 0xFF : 0x00, sizeof(ssd1306_buffer)); } #ifndef SSD1306_FULLUSE /* * expansion array for OLED with every other row unused */ const uint8_t expand[16] = { 0x00, // 0000 0000 0x02, // 0000 0010 0x08, // 0000 1000 0x0a, // 0000 1010 0x20, // 0010 0000 0x22, // 0010 0010 0x28, // 0010 1000 0x2a, // 0010 1010 0x80, // 1000 0000 0x82, // 1000 0010 0x88, // 1000 1000 0x8a, // 1000 1010 0xa0, // 1010 0000 0xa2, // 1010 0010 0xa8, // 1010 1000 0xaa, // 1010 1010 }; #endif /* * Send the frame buffer */ void ssd1306_refresh(void) { uint16_t i; ssd1306_cmd(SSD1306_COLUMNADDR); ssd1306_cmd(SSD1306_OFFSET); // Column start address (0 = reset) ssd1306_cmd(SSD1306_OFFSET + SSD1306_W - 1); // Column end address (127 = reset) ssd1306_cmd(SSD1306_PAGEADDR); ssd1306_cmd(0); // Page start address (0 = reset) ssd1306_cmd(7); // Page end address #ifdef SSD1306_FULLUSE /* for fully used rows just plow thru everything */ for (i = 0; i < sizeof(ssd1306_buffer); i += SSD1306_PSZ) { /* send PSZ block of data */ ssd1306_data(&ssd1306_buffer[i], SSD1306_PSZ); } #else /* for displays with odd rows unused expand bytes */ uint8_t tbuf[SSD1306_PSZ], j, k; for (i = 0; i < sizeof(ssd1306_buffer); i += 128) // for each page { /* low nybble */ for (j = 0; j < 128; j += SSD1306_PSZ) { for (k = 0; k < SSD1306_PSZ; k++) tbuf[k] = expand[ssd1306_buffer[i + j + k] & 0xf]; /* send PSZ block of data */ ssd1306_data(tbuf, SSD1306_PSZ); } /* high nybble */ for (j = 0; j < 128; j += SSD1306_PSZ) { for (k = 0; k < SSD1306_PSZ; k++) tbuf[k] = expand[(ssd1306_buffer[i + j + k] >> 4) & 0xf]; /* send PSZ block of data */ ssd1306_data(tbuf, SSD1306_PSZ); } } #endif } /* * plot a pixel in the buffer */ void ssd1306_drawPixel(uint8_t x, uint8_t y, uint8_t color) { uint16_t addr; /* clip */ if (x >= SSD1306_W) return; if (y >= SSD1306_H) return; /* compute buffer address */ addr = x + SSD1306_W * (y / 8); /* set/clear bit in buffer */ if (color) ssd1306_buffer[addr] |= (1 << (y & 7)); else ssd1306_buffer[addr] &= ~(1 << (y & 7)); } /* * plot a pixel in the buffer */ void ssd1306_xorPixel(uint8_t x, uint8_t y) { uint16_t addr; /* clip */ if (x >= SSD1306_W) return; if (y >= SSD1306_H) return; /* compute buffer address */ addr = x + SSD1306_W * (y / 8); ssd1306_buffer[addr] ^= (1 << (y & 7)); } /* * draw a an image from an array, directly into to the display buffer * the color modes allow for overwriting and even layering (sprites!) */ void ssd1306_drawImage(uint8_t x, uint8_t y, const unsigned char *input, uint8_t width, uint8_t height, uint8_t color_mode) { uint8_t x_absolute; uint8_t y_absolute; uint8_t pixel; uint8_t bytes_to_draw = width / 8; uint16_t buffer_addr; for (uint8_t line = 0; line < height; line++) { y_absolute = y + line; if (y_absolute >= SSD1306_H) { break; } // SSD1306 is in vertical mode, yet we want to draw horizontally, which necessitates assembling the output bytes from the input data // bitmask for current pixel in vertical (output) byte uint8_t v_mask = 1 << (y_absolute & 7); for (uint8_t byte = 0; byte < bytes_to_draw; byte++) { uint8_t input_byte = input[byte + line * bytes_to_draw]; for (pixel = 0; pixel < 8; pixel++) { x_absolute = x + 8 * (bytes_to_draw - byte) + pixel; if (x_absolute >= SSD1306_W) { break; } // looking at the horizontal display, we're drawing bytes bottom to top, not left to right, hence y / 8 buffer_addr = x_absolute + SSD1306_W * (y_absolute / 8); // state of current pixel uint8_t input_pixel = input_byte & (1 << pixel); switch (color_mode) { case 0: // write pixels as they are ssd1306_buffer[buffer_addr] = (ssd1306_buffer[buffer_addr] & ~v_mask) | (input_pixel ? v_mask : 0); break; case 1: // write pixels after inversion ssd1306_buffer[buffer_addr] = (ssd1306_buffer[buffer_addr] & ~v_mask) | (!input_pixel ? v_mask : 0); break; case 2: // 0 clears pixel ssd1306_buffer[buffer_addr] &= input_pixel ? 0xFF : ~v_mask; break; case 3: // 1 sets pixel ssd1306_buffer[buffer_addr] |= input_pixel ? v_mask : 0; break; case 4: // 0 sets pixel ssd1306_buffer[buffer_addr] |= !input_pixel ? v_mask : 0; break; case 5: // 1 clears pixel ssd1306_buffer[buffer_addr] &= input_pixel ? ~v_mask : 0xFF; break; } } #if SSD1306_LOG_IMAGE == 1 printf("%02x ", input_byte); #endif } #if SSD1306_LOG_IMAGE == 1 printf("\n\r"); #endif } } /* * fast vert line */ void ssd1306_drawFastVLine(uint8_t x, uint8_t y, uint8_t h, uint8_t color) { // clipping if ((x >= SSD1306_W) || (y >= SSD1306_H)) return; if ((y + h - 1) >= SSD1306_H) h = SSD1306_H - y; while (h--) { ssd1306_drawPixel(x, y++, color); } } /* * fast horiz line */ void ssd1306_drawFastHLine(uint8_t x, uint8_t y, uint8_t w, uint8_t color) { // clipping if ((x >= SSD1306_W) || (y >= SSD1306_H)) return; if ((x + w - 1) >= SSD1306_W) w = SSD1306_W - x; while (w--) { ssd1306_drawPixel(x++, y, color); } } /* * abs() helper function for line drawing */ int16_t gfx_abs(int16_t x) { return (x < 0) ? -x : x; } /* * swap() helper function for line drawing */ void gfx_swap(uint16_t *z0, uint16_t *z1) { uint16_t temp = *z0; *z0 = *z1; *z1 = temp; } /* * Bresenham line draw routine swiped from Wikipedia */ void ssd1306_drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint8_t color) { int16_t steep; int16_t deltax, deltay, error, ystep, x, y; /* flip sense 45deg to keep error calc in range */ steep = (gfx_abs(y1 - y0) > gfx_abs(x1 - x0)); if (steep) { gfx_swap(&x0, &y0); gfx_swap(&x1, &y1); } /* run low->high */ if (x0 > x1) { gfx_swap(&x0, &x1); gfx_swap(&y0, &y1); } /* set up loop initial conditions */ deltax = x1 - x0; deltay = gfx_abs(y1 - y0); error = deltax / 2; y = y0; if (y0 < y1) ystep = 1; else ystep = -1; /* loop x */ for (x = x0; x <= x1; x++) { /* plot point */ if (steep) /* flip point & plot */ ssd1306_drawPixel(y, x, color); else /* just plot */ ssd1306_drawPixel(x, y, color); /* update error */ error = error - deltay; /* update y */ if (error < 0) { y = y + ystep; error = error + deltax; } } } /* * draws a circle */ void ssd1306_drawCircle(int16_t x, int16_t y, int16_t radius, int8_t color) { /* Bresenham algorithm */ int16_t x_pos = -radius; int16_t y_pos = 0; int16_t err = 2 - 2 * radius; int16_t e2; do { ssd1306_drawPixel(x - x_pos, y + y_pos, color); ssd1306_drawPixel(x + x_pos, y + y_pos, color); ssd1306_drawPixel(x + x_pos, y - y_pos, color); ssd1306_drawPixel(x - x_pos, y - y_pos, color); e2 = err; if (e2 <= y_pos) { err += ++y_pos * 2 + 1; if (-x_pos == y_pos && e2 <= x_pos) { e2 = 0; } } if (e2 > x_pos) { err += ++x_pos * 2 + 1; } } while (x_pos <= 0); } /* * draws a filled circle */ void ssd1306_fillCircle(int16_t x, int16_t y, int16_t radius, int8_t color) { /* Bresenham algorithm */ int16_t x_pos = -radius; int16_t y_pos = 0; int16_t err = 2 - 2 * radius; int16_t e2; do { ssd1306_drawPixel(x - x_pos, y + y_pos, color); ssd1306_drawPixel(x + x_pos, y + y_pos, color); ssd1306_drawPixel(x + x_pos, y - y_pos, color); ssd1306_drawPixel(x - x_pos, y - y_pos, color); ssd1306_drawFastHLine(x + x_pos, y + y_pos, 2 * (-x_pos) + 1, color); ssd1306_drawFastHLine(x + x_pos, y - y_pos, 2 * (-x_pos) + 1, color); e2 = err; if (e2 <= y_pos) { err += ++y_pos * 2 + 1; if (-x_pos == y_pos && e2 <= x_pos) { e2 = 0; } } if (e2 > x_pos) { err += ++x_pos * 2 + 1; } } while (x_pos <= 0); } /* * draw a rectangle */ void ssd1306_drawRect(uint8_t x, uint8_t y, uint8_t w, uint8_t h, uint8_t color) { ssd1306_drawFastVLine(x, y, h, color); ssd1306_drawFastVLine(x + w - 1, y, h, color); ssd1306_drawFastHLine(x, y, w, color); ssd1306_drawFastHLine(x, y + h - 1, w, color); } /* * fill a rectangle */ void ssd1306_fillRect(uint8_t x, uint8_t y, uint8_t w, uint8_t h, uint8_t color) { uint8_t m, n = y, iw = w; /* scan vertical */ while (h--) { m = x; w = iw; /* scan horizontal */ while (w--) { /* invert pixels */ ssd1306_drawPixel(m++, n, color); } n++; } } /* * invert a rectangle in the buffer */ void ssd1306_xorrect(uint8_t x, uint8_t y, uint8_t w, uint8_t h) { uint8_t m, n = y, iw = w; /* scan vertical */ while (h--) { m = x; w = iw; /* scan horizontal */ while (w--) { /* invert pixels */ ssd1306_xorPixel(m++, n); } n++; } } /* * initialize I2C and OLED */ uint8_t ssd1306_init(void) { // pulse reset ssd1306_rst(); // initialize OLED uint8_t *cmd_list = (uint8_t *)ssd1306_init_array; while (*cmd_list != SSD1306_TERMINATE_CMDS) { if (ssd1306_cmd(*cmd_list++)) return 1; } // clear display ssd1306_setbuf(0); ssd1306_refresh(); return 0; } #endif