implement game of life

This commit is contained in:
Crispy 2024-04-07 00:46:58 +02:00
parent 842e23ae62
commit ca03632fa0
3 changed files with 969 additions and 7 deletions

View file

@ -1,23 +1,133 @@
/* Template app on which you can build your own. */
#define SSD1306_128X32
#include "ch32v003fun.h" #include "ch32v003fun.h"
#include <stdio.h> #include <stdio.h>
#include "ssd1306_i2c.h"
#include "ssd1306.h"
#define PIN_LED PC4 #define PIN_LED PC4
#define PIN_BTN PC7
#define u8 uint8_t
#define u16 uint16_t
uint8_t gol_tmp[sizeof(ssd1306_buffer)];
uint32_t lfsr = 1; // PRNG state
u8 rand8();
u8 get_pixel(u8 x, u8 y);
void gol_step();
void r_pentomino();
void randomise();
int main() int main()
{ {
SystemInit(); SystemInit();
funGpioInitAll(); funGpioInitAll();
funPinMode(PIN_LED, GPIO_CFGLR_OUT_10Mhz_PP);
funPinMode(PIN_BTN, GPIO_CFGLR_IN_PUPD);
funPinMode(PIN_LED, GPIO_Speed_10MHz | GPIO_CNF_OUT_PP); ssd1306_i2c_init();
ssd1306_init();
randomise();
while (1) while (1)
{ {
ssd1306_refresh();
gol_step();
memcpy(ssd1306_buffer, gol_tmp, sizeof(ssd1306_buffer));
if (funDigitalRead(PIN_BTN))
{
randomise();
ssd1306_refresh();
funDigitalWrite(PIN_LED, FUN_HIGH); funDigitalWrite(PIN_LED, FUN_HIGH);
Delay_Ms(150); Delay_Ms(100);
funDigitalWrite(PIN_LED, FUN_LOW); funDigitalWrite(PIN_LED, FUN_LOW);
Delay_Ms(150); }
} }
} }
void r_pentomino()
{
ssd1306_setbuf(0);
ssd1306_drawPixel(20, 20, 1);
ssd1306_drawPixel(21, 20, 1);
ssd1306_drawPixel(21, 21, 1);
ssd1306_drawPixel(22, 21, 1);
ssd1306_drawPixel(21, 22, 1);
}
void randomise()
{
lfsr = SysTick->CNT;
for (u16 b = 0; b < sizeof(ssd1306_buffer); b++)
{
ssd1306_buffer[b] = rand8();
}
}
u8 get_pixel(u8 x, u8 y)
{
x = x & 127;
y = y & 31;
u8 slice = ssd1306_buffer[(y / 8) * 128 + x];
return (slice & (1 << (y & 7))) != 0;
}
void gol_step()
{
// slow pixel-by-pixel implementation
for (u8 x = 0; x < 128; x++)
{
for (u8 y = 0; y < 32; y++)
{
u8 this = get_pixel(x, y);
u8 sum = 0;
sum += get_pixel(x + 127, y + 31);
sum += get_pixel(x + 127, y);
sum += get_pixel(x + 127, y + 1);
sum += get_pixel(x, y + 31);
sum += get_pixel(x, y + 1);
sum += get_pixel(x + 1, y + 31);
sum += get_pixel(x + 1, y);
sum += get_pixel(x + 1, y + 1);
u8 new_state = (sum == 3) | ((sum == 2) & this);
u16 addr = x + (y / 8) * 128;
if (new_state)
gol_tmp[addr] |= (1 << (y & 7));
else
gol_tmp[addr] &= ~(1 << (y & 7));
}
}
}
/* White Noise Generator State */
#define NOISE_BITS 8
#define NOISE_MASK ((1 << NOISE_BITS) - 1)
#define NOISE_POLY_TAP0 31
#define NOISE_POLY_TAP1 21
#define NOISE_POLY_TAP2 1
#define NOISE_POLY_TAP3 0
/*
* random byte generator, taken from ch32v003fun examples
*/
uint8_t rand8(void)
{
uint8_t bit;
uint32_t new_data;
for (bit = 0; bit < NOISE_BITS; bit++)
{
new_data = ((lfsr >> NOISE_POLY_TAP0) ^
(lfsr >> NOISE_POLY_TAP1) ^
(lfsr >> NOISE_POLY_TAP2) ^
(lfsr >> NOISE_POLY_TAP3));
lfsr = (lfsr << 1) | (new_data & 1);
}
return lfsr & NOISE_MASK;
}

489
ssd1306.h Normal file
View file

@ -0,0 +1,489 @@
/*
* Single-File-Header for using SPI OLED
* 05-05-2023 E. Brombaugh
*/
#ifndef _SSD1306_H
#define _SSD1306_H
#include <stdint.h>
#include <string.h>
// comfortable packet size for this OLED
#define SSD1306_PSZ 32
// characteristics of each type
#if !defined(SSD1306_64X32) && !defined(SSD1306_128X32) && !defined(SSD1306_128X64)
#error "Please define the SSD1306_WXH resolution used in your application"
#endif
#ifdef SSD1306_64X32
#define SSD1306_W 64
#define SSD1306_H 32
#define SSD1306_FULLUSE
#define SSD1306_OFFSET 32
#endif
#ifdef SSD1306_128X32
#define SSD1306_W 128
#define SSD1306_H 32
#define SSD1306_OFFSET 0
#endif
#ifdef SSD1306_128X64
#define SSD1306_W 128
#define SSD1306_H 64
#define SSD1306_FULLUSE
#define SSD1306_OFFSET 0
#endif
/*
* send OLED command byte
*/
uint8_t ssd1306_cmd(uint8_t cmd)
{
ssd1306_pkt_send(&cmd, 1, 1);
return 0;
}
/*
* send OLED data packet (up to 32 bytes)
*/
uint8_t ssd1306_data(uint8_t *data, uint8_t sz)
{
ssd1306_pkt_send(data, sz, 0);
return 0;
}
#define SSD1306_SETCONTRAST 0x81
#define SSD1306_SEGREMAP 0xA0
#define SSD1306_DISPLAYALLON_RESUME 0xA4
#define SSD1306_DISPLAYALLON 0xA5
#define SSD1306_NORMALDISPLAY 0xA6
#define SSD1306_INVERTDISPLAY 0xA7
#define SSD1306_DISPLAYOFF 0xAE
#define SSD1306_DISPLAYON 0xAF
#define SSD1306_SETDISPLAYOFFSET 0xD3
#define SSD1306_SETCOMPINS 0xDA
#define SSD1306_SETVCOMDETECT 0xDB
#define SSD1306_SETDISPLAYCLOCKDIV 0xD5
#define SSD1306_SETPRECHARGE 0xD9
#define SSD1306_SETMULTIPLEX 0xA8
#define SSD1306_SETLOWCOLUMN 0x00
#define SSD1306_SETHIGHCOLUMN 0x10
#define SSD1306_SETSTARTLINE 0x40
#define SSD1306_MEMORYMODE 0x20
#define SSD1306_COLUMNADDR 0x21
#define SSD1306_PAGEADDR 0x22
#define SSD1306_COMSCANINC 0xC0
#define SSD1306_COMSCANDEC 0xC8
#define SSD1306_CHARGEPUMP 0x8D
#define SSD1306_EXTERNALVCC 0x1
#define SSD1306_SWITCHCAPVCC 0x2
#define SSD1306_TERMINATE_CMDS 0xFF
/* choose VCC mode */
#define SSD1306_EXTERNALVCC 0x1
#define SSD1306_SWITCHCAPVCC 0x2
// #define vccstate SSD1306_EXTERNALVCC
#define vccstate SSD1306_SWITCHCAPVCC
// OLED initialization commands for 128x32
const uint8_t ssd1306_init_array[] =
{
SSD1306_DISPLAYOFF, // 0xAE
SSD1306_SETDISPLAYCLOCKDIV, // 0xD5
0x80, // the suggested ratio 0x80
SSD1306_SETMULTIPLEX, // 0xA8
#ifdef SSD1306_64X32
0x1F, // for 64-wide displays
#else
0x3F, // for 128-wide displays
#endif
SSD1306_SETDISPLAYOFFSET, // 0xD3
0x00, // no offset
SSD1306_SETSTARTLINE | 0x0, // 0x40 | line
SSD1306_CHARGEPUMP, // 0x8D
0x14, // enable?
SSD1306_MEMORYMODE, // 0x20
0x00, // 0x0 act like ks0108
SSD1306_SEGREMAP | 0x1, // 0xA0 | bit
SSD1306_COMSCANDEC,
SSD1306_SETCOMPINS, // 0xDA
0x12, //
SSD1306_SETCONTRAST, // 0x81
0x8F,
SSD1306_SETPRECHARGE, // 0xd9
0xF1,
SSD1306_SETVCOMDETECT, // 0xDB
0x40,
SSD1306_DISPLAYALLON_RESUME, // 0xA4
SSD1306_NORMALDISPLAY, // 0xA6
SSD1306_DISPLAYON, // 0xAF --turn on oled panel
SSD1306_TERMINATE_CMDS // 0xFF --fake command to mark end
};
// the display buffer
uint8_t ssd1306_buffer[SSD1306_W * SSD1306_H / 8];
/*
* set the buffer to a color
*/
void ssd1306_setbuf(uint8_t color)
{
memset(ssd1306_buffer, color ? 0xFF : 0x00, sizeof(ssd1306_buffer));
}
#ifndef SSD1306_FULLUSE
/*
* expansion array for OLED with every other row unused
*/
const uint8_t expand[16] =
{
0x00,
0x02,
0x08,
0x0a,
0x20,
0x22,
0x28,
0x2a,
0x80,
0x82,
0x88,
0x8a,
0xa0,
0xa2,
0xa8,
0xaa,
};
#endif
/*
* Send the frame buffer
*/
void ssd1306_refresh(void)
{
uint16_t i;
ssd1306_cmd(SSD1306_COLUMNADDR);
ssd1306_cmd(SSD1306_OFFSET); // Column start address (0 = reset)
ssd1306_cmd(SSD1306_OFFSET + SSD1306_W - 1); // Column end address (127 = reset)
ssd1306_cmd(SSD1306_PAGEADDR);
ssd1306_cmd(0); // Page start address (0 = reset)
ssd1306_cmd(7); // Page end address
#ifdef SSD1306_FULLUSE
/* for fully used rows just plow thru everything */
for (i = 0; i < sizeof(ssd1306_buffer); i += SSD1306_PSZ)
{
/* send PSZ block of data */
ssd1306_data(&ssd1306_buffer[i], SSD1306_PSZ);
}
#else
/* for displays with odd rows unused expand bytes */
uint8_t tbuf[SSD1306_PSZ], j, k;
for (i = 0; i < sizeof(ssd1306_buffer); i += 128) // for each page
{
/* low nybble */
for (j = 0; j < 128; j += SSD1306_PSZ)
{
for (k = 0; k < SSD1306_PSZ; k++)
tbuf[k] = expand[ssd1306_buffer[i + j + k] & 0xf];
/* send PSZ block of data */
ssd1306_data(tbuf, SSD1306_PSZ);
}
/* high nybble */
for (j = 0; j < 128; j += SSD1306_PSZ)
{
for (k = 0; k < SSD1306_PSZ; k++)
tbuf[k] = expand[(ssd1306_buffer[i + j + k] >> 4) & 0xf];
/* send PSZ block of data */
ssd1306_data(tbuf, SSD1306_PSZ);
}
}
#endif
}
/*
* plot a pixel in the buffer
*/
void ssd1306_drawPixel(uint8_t x, uint8_t y, uint8_t color)
{
uint16_t addr;
/* clip */
if (x >= SSD1306_W)
return;
if (y >= SSD1306_H)
return;
/* compute buffer address */
addr = x + SSD1306_W * (y / 8);
/* set/clear bit in buffer */
if (color)
ssd1306_buffer[addr] |= (1 << (y & 7));
else
ssd1306_buffer[addr] &= ~(1 << (y & 7));
}
/*
* fast vert line
*/
void ssd1306_drawFastVLine(uint8_t x, uint8_t y, uint8_t h, uint8_t color)
{
// clipping
if ((x >= SSD1306_W) || (y >= SSD1306_H))
return;
if ((y + h - 1) >= SSD1306_H)
h = SSD1306_H - y;
while (h--)
{
ssd1306_drawPixel(x, y++, color);
}
}
/*
* fast horiz line
*/
void ssd1306_drawFastHLine(uint8_t x, uint8_t y, uint8_t w, uint8_t color)
{
// clipping
if ((x >= SSD1306_W) || (y >= SSD1306_H))
return;
if ((x + w - 1) >= SSD1306_W)
w = SSD1306_W - x;
while (w--)
{
ssd1306_drawPixel(x++, y, color);
}
}
/*
* abs() helper function for line drawing
*/
int16_t gfx_abs(int16_t x)
{
return (x < 0) ? -x : x;
}
/*
* swap() helper function for line drawing
*/
void gfx_swap(uint16_t *z0, uint16_t *z1)
{
uint16_t temp = *z0;
*z0 = *z1;
*z1 = temp;
}
/*
* Bresenham line draw routine swiped from Wikipedia
*/
void ssd1306_drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint8_t color)
{
int16_t steep;
int16_t deltax, deltay, error, ystep, x, y;
/* flip sense 45deg to keep error calc in range */
steep = (gfx_abs(y1 - y0) > gfx_abs(x1 - x0));
if (steep)
{
gfx_swap(&x0, &y0);
gfx_swap(&x1, &y1);
}
/* run low->high */
if (x0 > x1)
{
gfx_swap(&x0, &x1);
gfx_swap(&y0, &y1);
}
/* set up loop initial conditions */
deltax = x1 - x0;
deltay = gfx_abs(y1 - y0);
error = deltax / 2;
y = y0;
if (y0 < y1)
ystep = 1;
else
ystep = -1;
/* loop x */
for (x = x0; x <= x1; x++)
{
/* plot point */
if (steep)
/* flip point & plot */
ssd1306_drawPixel(y, x, color);
else
/* just plot */
ssd1306_drawPixel(x, y, color);
/* update error */
error = error - deltay;
/* update y */
if (error < 0)
{
y = y + ystep;
error = error + deltax;
}
}
}
/*
* draws a circle
*/
void ssd1306_drawCircle(int16_t x, int16_t y, int16_t radius, int8_t color)
{
/* Bresenham algorithm */
int16_t x_pos = -radius;
int16_t y_pos = 0;
int16_t err = 2 - 2 * radius;
int16_t e2;
do
{
ssd1306_drawPixel(x - x_pos, y + y_pos, color);
ssd1306_drawPixel(x + x_pos, y + y_pos, color);
ssd1306_drawPixel(x + x_pos, y - y_pos, color);
ssd1306_drawPixel(x - x_pos, y - y_pos, color);
e2 = err;
if (e2 <= y_pos)
{
err += ++y_pos * 2 + 1;
if (-x_pos == y_pos && e2 <= x_pos)
{
e2 = 0;
}
}
if (e2 > x_pos)
{
err += ++x_pos * 2 + 1;
}
} while (x_pos <= 0);
}
/*
* draws a filled circle
*/
void ssd1306_fillCircle(int16_t x, int16_t y, int16_t radius, int8_t color)
{
/* Bresenham algorithm */
int16_t x_pos = -radius;
int16_t y_pos = 0;
int16_t err = 2 - 2 * radius;
int16_t e2;
do
{
ssd1306_drawPixel(x - x_pos, y + y_pos, color);
ssd1306_drawPixel(x + x_pos, y + y_pos, color);
ssd1306_drawPixel(x + x_pos, y - y_pos, color);
ssd1306_drawPixel(x - x_pos, y - y_pos, color);
ssd1306_drawFastHLine(x + x_pos, y + y_pos, 2 * (-x_pos) + 1, color);
ssd1306_drawFastHLine(x + x_pos, y - y_pos, 2 * (-x_pos) + 1, color);
e2 = err;
if (e2 <= y_pos)
{
err += ++y_pos * 2 + 1;
if (-x_pos == y_pos && e2 <= x_pos)
{
e2 = 0;
}
}
if (e2 > x_pos)
{
err += ++x_pos * 2 + 1;
}
} while (x_pos <= 0);
}
/*
* draw a rectangle
*/
void ssd1306_drawRect(uint8_t x, uint8_t y, uint8_t w, uint8_t h, uint8_t color)
{
ssd1306_drawFastVLine(x, y, h, color);
ssd1306_drawFastVLine(x + w - 1, y, h, color);
ssd1306_drawFastHLine(x, y, w, color);
ssd1306_drawFastHLine(x, y + h - 1, w, color);
}
/*
* fill a rectangle
*/
void ssd1306_fillRect(uint8_t x, uint8_t y, uint8_t w, uint8_t h, uint8_t color)
{
uint8_t m, n = y, iw = w;
/* scan vertical */
while (h--)
{
m = x;
w = iw;
/* scan horizontal */
while (w--)
{
/* invert pixels */
ssd1306_drawPixel(m++, n, color);
}
n++;
}
}
/*
* invert a rectangle in the buffer
*/
void ssd1306_xorrect(uint8_t x, uint8_t y, uint8_t w, uint8_t h)
{
uint8_t m, n = y, iw = w;
/* scan vertical */
while (h--)
{
m = x;
w = iw;
/* scan horizontal */
while (w--)
{
/* invert pixels */
ssd1306_xorPixel(m++, n);
}
n++;
}
}
/*
* initialize I2C and OLED
*/
uint8_t ssd1306_init(void)
{
// pulse reset
ssd1306_rst();
// initialize OLED
uint8_t *cmd_list = (uint8_t *)ssd1306_init_array;
while (*cmd_list != SSD1306_TERMINATE_CMDS)
{
if (ssd1306_cmd(*cmd_list++))
return 1;
}
// clear display
// ssd1306_setbuf(0);
ssd1306_refresh();
return 0;
}
#endif

363
ssd1306_i2c.h Normal file
View file

@ -0,0 +1,363 @@
/*
* Single-File-Header for SSD1306 I2C interface
* 05-07-2023 E. Brombaugh
*/
#ifndef _SSD1306_I2C_H
#define _SSD1306_I2C_H
#include <string.h>
// SSD1306 I2C address
#define SSD1306_I2C_ADDR 0x3c
// I2C Bus clock rate - must be lower the Logic clock rate
#define SSD1306_I2C_CLKRATE 1000000
// I2C Logic clock rate - must be higher than Bus clock rate
#define SSD1306_I2C_PRERATE 2000000
// uncomment this for high-speed 36% duty cycle, otherwise 33%
#define SSD1306_I2C_DUTY
// I2C Timeout count
#define TIMEOUT_MAX 100000
// uncomment this to enable IRQ-driven operation
//#define SSD1306_I2C_IRQ
#ifdef SSD1306_I2C_IRQ
// some stuff that IRQ mode needs
volatile uint8_t ssd1306_i2c_send_buffer[64], *ssd1306_i2c_send_ptr, ssd1306_i2c_send_sz, ssd1306_i2c_irq_state;
// uncomment this to enable time diags in IRQ
//#define IRQ_DIAG
#endif
/*
* init just I2C
*/
void ssd1306_i2c_setup(void)
{
uint16_t tempreg;
// Reset I2C1 to init all regs
RCC->APB1PRSTR |= RCC_APB1Periph_I2C1;
RCC->APB1PRSTR &= ~RCC_APB1Periph_I2C1;
// set freq
tempreg = I2C1->CTLR2;
tempreg &= ~I2C_CTLR2_FREQ;
tempreg |= (FUNCONF_SYSTEM_CORE_CLOCK/SSD1306_I2C_PRERATE)&I2C_CTLR2_FREQ;
I2C1->CTLR2 = tempreg;
// Set clock config
tempreg = 0;
#if (SSD1306_I2C_CLKRATE <= 100000)
// standard mode good to 100kHz
tempreg = (FUNCONF_SYSTEM_CORE_CLOCK/(2*SSD1306_I2C_CLKRATE))&SSD1306_I2C_CKCFGR_CCR;
#else
// fast mode over 100kHz
#ifndef SSD1306_I2C_DUTY
// 33% duty cycle
tempreg = (FUNCONF_SYSTEM_CORE_CLOCK/(3*SSD1306_I2C_CLKRATE))&SSD1306_I2C_CKCFGR_CCR;
#else
// 36% duty cycle
tempreg = (FUNCONF_SYSTEM_CORE_CLOCK/(25*SSD1306_I2C_CLKRATE))&I2C_CKCFGR_CCR;
tempreg |= I2C_CKCFGR_DUTY;
#endif
tempreg |= I2C_CKCFGR_FS;
#endif
I2C1->CKCFGR = tempreg;
#ifdef SSD1306_I2C_IRQ
// enable IRQ driven operation
NVIC_EnableIRQ(I2C1_EV_IRQn);
// initialize the state
ssd1306_i2c_irq_state = 0;
#endif
// Enable I2C
I2C1->CTLR1 |= I2C_CTLR1_PE;
// set ACK mode
I2C1->CTLR1 |= I2C_CTLR1_ACK;
}
/*
* error descriptions
*/
char *errstr[] =
{
"not busy",
"master mode",
"transmit mode",
"tx empty",
"transmit complete",
};
/*
* error handler
*/
uint8_t ssd1306_i2c_error(uint8_t err)
{
// report error
printf("ssd1306_i2c_error - timeout waiting for %s\n\r", errstr[err]);
// reset & initialize I2C
ssd1306_i2c_setup();
return 1;
}
// event codes we use
#define SSD1306_I2C_EVENT_MASTER_MODE_SELECT ((uint32_t)0x00030001) /* BUSY, MSL and SB flag */
#define SSD1306_I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED ((uint32_t)0x00070082) /* BUSY, MSL, ADDR, TXE and TRA flags */
#define SSD1306_I2C_EVENT_MASTER_BYTE_TRANSMITTED ((uint32_t)0x00070084) /* TRA, BUSY, MSL, TXE and BTF flags */
/*
* check for 32-bit event codes
*/
uint8_t ssd1306_i2c_chk_evt(uint32_t event_mask)
{
/* read order matters here! STAR1 before STAR2!! */
uint32_t status = I2C1->STAR1 | (I2C1->STAR2<<16);
return (status & event_mask) == event_mask;
}
#ifdef SSD1306_I2C_IRQ
/*
* packet send for IRQ-driven operation
*/
uint8_t ssd1306_i2c_send(uint8_t addr, uint8_t *data, uint8_t sz)
{
int32_t timeout;
#ifdef IRQ_DIAG
GPIOC->BSHR = (1<<(3));
#endif
// error out if buffer under/overflow
if((sz > sizeof(ssd1306_i2c_send_buffer)) || !sz)
return 2;
// wait for previous packet to finish
while(ssd1306_i2c_irq_state);
#ifdef IRQ_DIAG
GPIOC->BSHR = (1<<(16+3));
GPIOC->BSHR = (1<<(4));
#endif
// init buffer for sending
ssd1306_i2c_send_sz = sz;
ssd1306_i2c_send_ptr = ssd1306_i2c_send_buffer;
memcpy((uint8_t *)ssd1306_i2c_send_buffer, data, sz);
// wait for not busy
timeout = TIMEOUT_MAX;
while((I2C1->STAR2 & I2C_STAR2_BUSY) && (timeout--));
if(timeout==-1)
return ssd1306_i2c_error(0);
// Set START condition
I2C1->CTLR1 |= I2C_CTLR1_START;
// wait for master mode select
timeout = TIMEOUT_MAX;
while((!ssd1306_i2c_chk_evt(SSD1306_I2C_EVENT_MASTER_MODE_SELECT)) && (timeout--));
if(timeout==-1)
return ssd1306_i2c_error(1);
// send 7-bit address + write flag
I2C1->DATAR = addr<<1;
// wait for transmit condition
timeout = TIMEOUT_MAX;
while((!ssd1306_i2c_chk_evt(SSD1306_I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED)) && (timeout--));
if(timeout==-1)
return ssd1306_i2c_error(2);
// Enable TXE interrupt
I2C1->CTLR2 |= I2C_CTLR2_ITBUFEN | I2C_CTLR2_ITEVTEN;
ssd1306_i2c_irq_state = 1;
#ifdef IRQ_DIAG
GPIOC->BSHR = (1<<(16+4));
#endif
// exit
return 0;
}
/*
* IRQ handler for I2C events
*/
void I2C1_EV_IRQHandler(void) __attribute__((interrupt));
void I2C1_EV_IRQHandler(void)
{
uint16_t STAR1, STAR2 __attribute__((unused));
#ifdef IRQ_DIAG
GPIOC->BSHR = (1<<(4));
#endif
// read status, clear any events
STAR1 = I2C1->STAR1;
STAR2 = I2C1->STAR2;
/* check for TXE */
if(STAR1 & I2C_STAR1_TXE)
{
/* check for remaining data */
if(ssd1306_i2c_send_sz--)
I2C1->DATAR = *ssd1306_i2c_send_ptr++;
/* was that the last byte? */
if(!ssd1306_i2c_send_sz)
{
// disable TXE interrupt
I2C1->CTLR2 &= ~(I2C_CTLR2_ITBUFEN | I2C_CTLR2_ITEVTEN);
// reset IRQ state
ssd1306_i2c_irq_state = 0;
// wait for tx complete
while(!ssd1306_i2c_chk_evt(SSD1306_I2C_EVENT_MASTER_BYTE_TRANSMITTED));
// set STOP condition
I2C1->CTLR1 |= I2C_CTLR1_STOP;
}
}
#ifdef IRQ_DIAG
GPIOC->BSHR = (1<<(16+4));
#endif
}
#else
/*
* low-level packet send for blocking polled operation via i2c
*/
uint8_t ssd1306_i2c_send(uint8_t addr, uint8_t *data, uint8_t sz)
{
int32_t timeout;
// wait for not busy
timeout = TIMEOUT_MAX;
while((I2C1->STAR2 & I2C_STAR2_BUSY) && (timeout--));
if(timeout==-1)
return ssd1306_i2c_error(0);
// Set START condition
I2C1->CTLR1 |= I2C_CTLR1_START;
// wait for master mode select
timeout = TIMEOUT_MAX;
while((!ssd1306_i2c_chk_evt(SSD1306_I2C_EVENT_MASTER_MODE_SELECT)) && (timeout--));
if(timeout==-1)
return ssd1306_i2c_error(1);
// send 7-bit address + write flag
I2C1->DATAR = addr<<1;
// wait for transmit condition
timeout = TIMEOUT_MAX;
while((!ssd1306_i2c_chk_evt(SSD1306_I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED)) && (timeout--));
if(timeout==-1)
return ssd1306_i2c_error(2);
// send data one byte at a time
while(sz--)
{
// wait for TX Empty
timeout = TIMEOUT_MAX;
while(!(I2C1->STAR1 & I2C_STAR1_TXE) && (timeout--));
if(timeout==-1)
return ssd1306_i2c_error(3);
// send command
I2C1->DATAR = *data++;
}
// wait for tx complete
timeout = TIMEOUT_MAX;
while((!ssd1306_i2c_chk_evt(SSD1306_I2C_EVENT_MASTER_BYTE_TRANSMITTED)) && (timeout--));
if(timeout==-1)
return ssd1306_i2c_error(4);
// set STOP condition
I2C1->CTLR1 |= I2C_CTLR1_STOP;
// we're happy
return 0;
}
#endif
/*
* high-level packet send for I2C
*/
uint8_t ssd1306_pkt_send(uint8_t *data, uint8_t sz, uint8_t cmd)
{
uint8_t pkt[33];
/* build command or data packets */
if(cmd)
{
pkt[0] = 0;
pkt[1] = *data;
}
else
{
pkt[0] = 0x40;
memcpy(&pkt[1], data, sz);
}
return ssd1306_i2c_send(SSD1306_I2C_ADDR, pkt, sz+1);
}
/*
* init I2C and GPIO
*/
uint8_t ssd1306_i2c_init(void)
{
// Enable GPIOC and I2C
RCC->APB2PCENR |= RCC_APB2Periph_GPIOC;
RCC->APB1PCENR |= RCC_APB1Periph_I2C1;
// PC1 is SDA, 10MHz Output, alt func, open-drain
GPIOC->CFGLR &= ~(0xf<<(4*1));
GPIOC->CFGLR |= (GPIO_Speed_10MHz | GPIO_CNF_OUT_OD_AF)<<(4*1);
// PC2 is SCL, 10MHz Output, alt func, open-drain
GPIOC->CFGLR &= ~(0xf<<(4*2));
GPIOC->CFGLR |= (GPIO_Speed_10MHz | GPIO_CNF_OUT_OD_AF)<<(4*2);
#ifdef IRQ_DIAG
// GPIO diags on PC3/PC4
GPIOC->CFGLR &= ~(0xf<<(4*3));
GPIOC->CFGLR |= (GPIO_Speed_10MHz | GPIO_CNF_OUT_PP)<<(4*3);
GPIOC->BSHR = (1<<(16+3));
GPIOC->CFGLR &= ~(0xf<<(4*4));
GPIOC->CFGLR |= (GPIO_Speed_10MHz | GPIO_CNF_OUT_PP)<<(4*4);
GPIOC->BSHR = (1<<(16+4));
#endif
// load I2C regs
ssd1306_i2c_setup();
#if 0
// test if SSD1306 is on the bus by sending display off command
uint8_t command = 0xAF;
return ssd1306_pkt_send(&command, 1, 1);
#else
return 0;
#endif
}
/*
* reset is not used for SSD1306 I2C interface
*/
void ssd1306_rst(void)
{
}
#endif