Shader "CrispyPin/Sunset Environment (Dynamic)" { Properties { [Header(Sky)] _SkyCol ("Sky color", Color) = (0.22, 0.23, 0.58, 1.0) _HorizonTint ("Horizon tint", Range(0, 1)) = 0.1 [Header(Sun)] _SunCol ("Sun color", Color) = (1.0, 0.65, 0.05, 1.0) _SunRadius ("Sun radius", Range(0, 0.3)) = 0.06 _SunCutoff ("Sun cutoff", Range(0, 0.5)) = 0.08 [Header(Star Layout)] [NoScaleOffset] _NoiseTex ("Noise source", 2D) = "white" {} _StarDensity ("Star density", Range(4, 50)) = 20 _StarRandom ("Star randomness", Range(0, 1)) = 0.85 [Header(Star)] _StarsMissing ("Stars missing", Range(0, 1)) = 0.75 _StarSize ("Star size", Range(0, 0.1)) = 0.06 _StarSizeRandom ("Star size randomness", Range(0, 1)) = 0.5 _StarTint ("Star tint", Range(0, 1)) = 0.4 [Header(Water)] _HeightOffset ("Height offset", Range(-10, 10)) = -0.5 _WaterCol ("Water color", Color) = (0.03, 0.08, 0.12, 1.0) _WaveStrength ("Wave scale", Range(0, 1)) = 1 [NoScaleOffset] _WaterSurface ("Surface Normal", 2D) = "white" {} [Header(Debug)] _Grid ("Grid visibility", Range(0, 1)) = 0 } SubShader { Tags { "RenderType"="Opaque" } LOD 100 Cull back Pass { CGPROGRAM #pragma vertex vert #pragma fragment frag #include "UnityCG.cginc" #define PI 3.1416f #define WHITE 1 #define UP float3(0, 1, 0) struct appdata { float4 vertex : POSITION; }; struct v2f { float4 vertex : SV_POSITION; float3 cam_pos : TEXCOORD0; float3 hit_pos : TEXCOORD1; }; sampler2D _NoiseTex; float3 _SkyCol; float _HorizonTint; float _StarsMissing; float _StarDensity; float _StarRandom; float _StarSize; float _StarSizeRandom; float _StarTint; float3 _SunCol; float _SunAngle; float _SunRadius; float _SunCutoff; sampler2D _WaterSurface; float3 _WaterCol; float _HeightOffset; float _WaveStrength; float _Grid; v2f vert (appdata v) { v2f o; o.vertex = UnityObjectToClipPos(v.vertex); o.cam_pos = _WorldSpaceCameraPos; o.hit_pos = mul(unity_ObjectToWorld, v.vertex); return o; } float3 get_water_normal(float2 pos) { pos *= 0.03; float3 normal = 0; float t1 = _Time.x * 0.18; normal += (tex2D(_WaterSurface, pos * 1.04 + float2(t1, t1 * 0.5)) - 0.5); float t2 = _Time.x * 0.37; normal += (tex2D(_WaterSurface, pos * 0.276 + float2(t2 * 0.8, t2)) - 0.5); // float t3 = _Time.x * 0.08; // normal += (tex2D(_WaterSurface, pos * 0.07 + float2(t3 * 0.8, -t3)) - 0.5); normal = normalize(normal.zxy); // return UP; return lerp(UP, normal, _WaveStrength); } inline float smin(float a, float b, float k) { float h = max(k - abs(a - b), 0) / k; return min(a, b) - h * h * h * k * 1/6; } inline float smax(float a, float b, float k) { float h = max(k - abs(a - b), 0) / k; return max(a, b) + h * h * h * k * 1/6; } float3 sky(float3 dir, float theta, float phi, float3 sun_dir) { /// background float factor = smoothstep(0, 0.5, dir.y + 0.2); float3 horizon_col = lerp(_SkyCol, _SunCol, _HorizonTint); float3 col = lerp(horizon_col, _SkyCol, factor); /// stars float2 cells = float2(-1, floor(_StarDensity)); float cell_x_base = floor(cells.y * PI); float celly = phi * cells.y; // cells per ring depend on y pos, to reduce warping around the poles: cells.x = floor(cos(floor(celly) / _StarDensity) * cell_x_base); float cellx = (theta / PI * cells.x); float2 pos = float2(cellx, celly); // cell-space pos of this pixel float2 cell_pos = float2(floor(cellx), floor(celly)); // position of this cell float2 cell_center = cell_pos + 0.5; float2 star_pos = cell_center + (tex2D(_NoiseTex, cell_pos / cells + float2(0, 0.1)) - 0.5) * _StarRandom; /// star color float3 r = tex2D(_NoiseTex, cell_pos / cells); float rnum = frac((r.r + r.g - r.b) * 10); float rnum2 = frac((r.r - r.g + r.b) * 10); float star_size = _StarSize * (rnum * _StarSizeRandom + (1 - _StarSizeRandom)); float distance = length(pos - star_pos); float star_strength = max(min(star_size / distance * 0.5, 1.25) - 0.25, 0); // star glow star_strength *= clamp(sin(phi * 2) - 0.1, 0, 1); // fade stars near/under horizon star_strength *= length(r) / 2; // fade stars star_strength *= rnum2 > _StarsMissing; // remove stars float3 star_col = lerp(WHITE, r, _StarTint); col = lerp(col, star_col, star_strength); /// debug grid col = lerp(col, WHITE, _Grid * (frac(cellx) < 0.04 || frac(celly) < 0.04)); /// sun float alignment = min(acos(dot(dir, sun_dir)), 1); float sun_amount = smax(min(_SunRadius / alignment, 5) - _SunCutoff, 0, 0.15); col = lerp(col, _SunCol, sun_amount); return col; } float4 frag(v2f i) : SV_Target { // float3 horizon_col = lerp(_SkyCol, _SunCol, _HorizonTint); float3 origin = mul(unity_ObjectToWorld, float4(0, 0, 0, 1)); float3 sun_dir = normalize(mul(unity_ObjectToWorld, float4(0, 0, 1, 1)) * float3(1, 0, 1) - origin); float3 dir = normalize(i.hit_pos - i.cam_pos); float theta = atan2(dir.x, dir.z); // latitude float phi = asin(dir.y); // longitude float3 col; if (phi < 0) { origin.y += _HeightOffset; float3 camera_local_pos = i.cam_pos - origin; camera_local_pos.y = max(camera_local_pos.y, 0.01); // don't allow looking under water surface; it renders backwards. float3 surface_pos = float3 ( camera_local_pos.x - camera_local_pos.y / (dir.y / dir.x), 0, camera_local_pos.z - camera_local_pos.y / (dir.y / dir.z) ); float3 water_normal = get_water_normal(surface_pos.xz); dir = reflect(dir, water_normal); phi = asin(dir.y); float hit_angle = dot(dir, water_normal); float3 sky_reflection = sky(dir, theta, phi, sun_dir); col = lerp(sky_reflection, _WaterCol, hit_angle); // float distance = length(surface_pos - camera_local_pos); // float fog_factor = smoothstep(10, 70, distance) * 0.4; // col = lerp(col, horizon_col, fog_factor); } else { col = sky(dir, theta, phi, sun_dir); } return float4(col, 1); } ENDCG } } }