Shader "CrispyPin/Lenia" { Properties { _LastFrame ("Texture", 2D) = "white" {} _GrowtCenter ("Growth fn center (mu)", Range(0, 1)) = 0.2 _GrowthWidth ("Growth fn width (sigma / std deviation)", Range(0, 1)) = 0.07 _Speed ("Speed factor", Range(0.001, 0.5)) = 0.1 } SubShader { Tags { "RenderType"="Opaque" } LOD 100 Pass { CGPROGRAM #pragma vertex vert #pragma fragment frag #include "UnityCG.cginc" struct appdata { float4 vertex : POSITION; float2 uv : TEXCOORD0; }; struct v2f { float2 uv : TEXCOORD0; float4 vertex : SV_POSITION; }; sampler2D _LastFrame; float _GrowtCenter; float _GrowthWidth; float _Speed; v2f vert (appdata v) { v2f o; o.vertex = UnityObjectToClipPos(v.vertex); o.uv = v.uv; return o; } float kernel(float p) { float r = p / 8.0; float k_sharpness = 28; float k_offset = 0.435; return exp(-((r - k_offset) * (r - k_offset)) * k_sharpness); // float r = p / _Radius; // // -- normal // return exp(-((r - _KOffset)*(r - _KOffset)) * _KSharpness); // -- example from the lenia paper // if (r >= 1) return 0; // const float alpha = 4; // return exp(alpha - alpha/(4.0 * r * (1.0 - r))); } inline float activation(float neighbors) { // return old_state * (neighbors > 2 && neighbors < 5) + // ((1 - old_state) * neighbors == 3); // const float sharpness = 1000.0; // float x = neighbors - _GrowtCenter; // return exp(-(x*x) * _GrowthWidth) * 2.0 - 1.0; const float mu = _GrowtCenter; const float sigma = _GrowthWidth; const float u = neighbors; return exp(-((u-mu) * (u-mu)) / (2 * sigma * sigma)) * 2.0 - 1.0; } inline half value(float2 center, float x, float y) { return tex2D(_LastFrame, center + float2(x, y)).r; } fixed4 frag (v2f i) : SV_Target { if(_ProjectionParams.z > 1) discard; const float resolution = 512.0; const float d = 1.0 / resolution; // Defines RADIUS Radius Kernel total_max #include "lenia_generated_kernel.cginc" float total = 0.0; [unroll(RADIUS)] for (int y = 0; y < Radius; y++) { [unroll(RADIUS)] for (int x = 1; x <= Radius; x++) { const float xx = (float)x * d; const float yy = (float)y * d; total += value(i.uv, xx, yy) * Kernel[y][x-1]; total += value(i.uv, -yy, xx) * Kernel[y][x-1]; total += value(i.uv, -xx, -yy) * Kernel[y][x-1]; total += value(i.uv, yy, -xx) * Kernel[y][x-1]; } } // */ /* float total_max = 0; float total = 0; for (int x = -Radius; x <= Radius; x++) { for (int y = -Radius; y <= Radius; y++) { float dist = sqrt(x*x+y*y); float kval = kernel(dist); total_max += kval; total += value(i.uv, x*d, y*d) * kval; } } // */ float old_state = value(i.uv, 0.0, 0.0) ; float count = total / total_max; float state = activation(count) * _Speed + old_state; state = clamp(state, 0, 1); // kernel visualization: lookup table (SLOW) // float k = 0; // { // float2 p = (i.uv - 0.5 ) * resolution; // p = floor(p); // if (p.x > 0 && p.y >= 0) { // k = Kernel[p.y][p.x-1]; // } else if (p.x <= 0 && p.y > 0) { // k = Kernel[-p.x][p.y-1]; // } else if (p.x < 0 && p.y <= 0) { // k = Kernel[-p.y][-p.x-1]; // } else if (p.x >= 0 && p.y < 0) { // k = Kernel[p.x][-p.y-1]; // } // } // kernel visualisation: real size // float2 p = (i.uv - 0.5) * resolution; // float k = kernel(length(p)) * (max(abs(p.x), abs(p.y)) <= _Radius); // kernel visualisation: fill square // float k = kernel(length(i.uv - 0.5) * _Radius * 2); // float a = activation(i.uv.x); // float4 col = float4(state, k, a, 1); float4 col = float4(state, i.uv.x * state, i.uv.y * state, 1); return col; } ENDCG } } }