[gd_scene load_steps=6 format=2] [ext_resource path="res://examples/menu/menu.tscn" type="PackedScene" id=1] [ext_resource path="res://themes/retro_green.tres" type="Theme" id=2] [sub_resource type="Shader" id=1] code = "/* Shader from Godot Shaders - the free shader library. godotshaders.com/shader/VHS-and-CRT-monitor-effect This shader is under CC0 license. Feel free to use, improve and change this shader according to your needs and consider sharing the modified result to godotshaders.com. */ shader_type canvas_item; //*** IMPORTANT! ***/ // - If you are using this shader to affect the node it is applied to set 'overlay' to false (unchecked in the instepctor). // - If you are using this shader as an overlay, and want the shader to affect the nodes below in the Scene hierarchy, // set 'overlay' to true (checked in the inspector). // On Mac there is potentially a bug causing this to not work properly. If that is the case and you want to use the shader as an overlay // change all \"overlay ? SCREEN_TEXTURE : TEXTURE\" to only \"SCREEN_TEXTURE\" on lines 129-140, and \"vec2 uv = overlay ? warp(SCREEN_UV) : warp(UV);\" // to \"vec2 uv = warp(SCREEN_UV);\" on line 98. uniform bool overlay = false; uniform float scanlines_opacity : hint_range(0.0, 1.0) = 0.4; uniform float scanlines_width : hint_range(0.0, 0.5) = 0.25; uniform float grille_opacity : hint_range(0.0, 1.0) = 0.3; uniform vec2 resolution = vec2(640.0, 480.0); // Set the number of rows and columns the texture will be divided in. Scanlines and grille will make a square based on these values uniform bool pixelate = true; // Fill each square (\"pixel\") with a sampled color, creating a pixel look and a more accurate representation of how a CRT monitor would work. uniform bool roll = true; uniform float roll_speed = 8.0; // Positive values are down, negative are up uniform float roll_size : hint_range(0.0, 100.0) = 15.0; uniform float roll_variation : hint_range(0.1, 5.0) = 1.8; // This value is not an exact science. You have to play around with the value to find a look you like. How this works is explained in the code below. uniform float distort_intensity : hint_range(0.0, 0.2) = 0.05; // The distortion created by the rolling effect. uniform float noise_opacity : hint_range(0.0, 1.0) = 0.4; uniform float noise_speed = 5.0; // There is a movement in the noise pattern that can be hard to see first. This sets the speed of that movement. uniform float static_noise_intensity : hint_range(0.0, 1.0) = 0.06; uniform float aberration : hint_range(-1.0, 1.0) = 0.03; // Chromatic aberration, a distortion on each color channel. uniform float brightness = 1.4; // When adding scanline gaps and grille the image can get very dark. Brightness tries to compensate for that. uniform bool discolor = true; // Add a discolor effect simulating a VHS uniform float warp_amount :hint_range(0.0, 5.0) = 1.0; // Warp the texture edges simulating the curved glass of a CRT monitor or old TV. uniform bool clip_warp = false; uniform float vignette_intensity = 0.4; // Size of the vignette, how far towards the middle it should go. uniform float vignette_opacity : hint_range(0.0, 1.0) = 0.5; // Used by the noise function to generate a pseudo random value between 0.0 and 1.0 vec2 random(vec2 uv){ uv = vec2( dot(uv, vec2(127.1,311.7) ), dot(uv, vec2(269.5,183.3) ) ); return -1.0 + 2.0 * fract(sin(uv) * 43758.5453123); } // Generate a Perlin noise used by the distortion effects float noise(vec2 uv) { vec2 uv_index = floor(uv); vec2 uv_fract = fract(uv); vec2 blur = smoothstep(0.0, 1.0, uv_fract); return mix( mix( dot( random(uv_index + vec2(0.0,0.0) ), uv_fract - vec2(0.0,0.0) ), dot( random(uv_index + vec2(1.0,0.0) ), uv_fract - vec2(1.0,0.0) ), blur.x), mix( dot( random(uv_index + vec2(0.0,1.0) ), uv_fract - vec2(0.0,1.0) ), dot( random(uv_index + vec2(1.0,1.0) ), uv_fract - vec2(1.0,1.0) ), blur.x), blur.y) * 0.5 + 0.5; } // Takes in the UV and warps the edges, creating the spherized effect vec2 warp(vec2 uv){ vec2 delta = uv - 0.5; float delta2 = dot(delta.xy, delta.xy); float delta4 = delta2 * delta2; float delta_offset = delta4 * warp_amount; return uv + delta * delta_offset; } // Adds a black border to hide stretched pixel created by the warp effect float border (vec2 uv){ float radius = min(warp_amount, 0.08); radius = max(min(min(abs(radius * 2.0), abs(1.0)), abs(1.0)), 1e-5); vec2 abs_uv = abs(uv * 2.0 - 1.0) - vec2(1.0, 1.0) + radius; float dist = length(max(vec2(0.0), abs_uv)) / radius; float square = smoothstep(0.96, 1.0, dist); return clamp(1.0 - square, 0.0, 1.0); } // Adds a vignette shadow to the edges of the image float vignette(vec2 uv){ uv *= 1.0 - uv.xy; float vignette = uv.x * uv.y * 15.0; return pow(vignette, vignette_intensity * vignette_opacity); } void fragment() { vec2 uv = overlay ? warp(SCREEN_UV) : warp(UV); // Warp the uv. uv will be used in most cases instead of UV to keep the warping vec2 text_uv = uv; vec2 roll_uv = vec2(0.0); float time = roll ? TIME : 0.0; // Pixelate the texture based on the given resolution. if (pixelate) { text_uv = ceil(uv * resolution) / resolution; } // Create the rolling effect. We need roll_line a bit later to make the noise effect. // That is why this runs if roll is true OR noise_opacity is over 0. float roll_line = 0.0; if (roll || noise_opacity > 0.0) { // Create the areas/lines where the texture will be distorted. roll_line = smoothstep(0.3, 0.9, sin(uv.y * roll_size - (time * roll_speed) ) ); // Create more lines of a different size and apply to the first set of lines. This creates a bit of variation. roll_line *= roll_line * smoothstep(0.3, 0.9, sin(uv.y * roll_size * roll_variation - (time * roll_speed * roll_variation) ) ); // Distort the UV where where the lines are roll_uv = vec2(( roll_line * distort_intensity * (1.-UV.x)), 0.0); } vec4 text; if (roll) { // If roll is true distort the texture with roll_uv. The texture is split up into RGB to // make some chromatic aberration. We apply the aberration to the red and green channels accorging to the aberration parameter // and intensify it a bit in the roll distortion. text.r = texture(SCREEN_TEXTURE, text_uv + roll_uv * 0.8 + vec2(aberration, 0.0) * .1).r; text.g = texture(SCREEN_TEXTURE, text_uv + roll_uv * 1.2 - vec2(aberration, 0.0) * .1 ).g; text.b = texture(SCREEN_TEXTURE, text_uv + roll_uv).b; text.a = 1.0; } else { // If roll is false only apply the aberration without any distorion. The aberration values are very small so the .1 is only // to make the slider in the Inspector less sensitive. text.r = texture(SCREEN_TEXTURE, text_uv + vec2(aberration, 0.0) * .1).r; text.g = texture(SCREEN_TEXTURE, text_uv - vec2(aberration, 0.0) * .1).g; text.b = texture(SCREEN_TEXTURE, text_uv).b; text.a = 1.0; } float r = text.r; float g = text.g; float b = text.b; uv = warp(UV); // CRT monitors don't have pixels but groups of red, green and blue dots or lines, called grille. We isolate the texture's color channels // and divide it up in 3 offsetted lines to show the red, green and blue colors next to each other, with a small black gap between. if (grille_opacity > 0.0){ float g_r = smoothstep(0.85, 0.95, abs(sin(uv.x * (resolution.x * 3.14159265)))); r = mix(r, r * g_r, grille_opacity); float g_g = smoothstep(0.85, 0.95, abs(sin(1.05 + uv.x * (resolution.x * 3.14159265)))); g = mix(g, g * g_g, grille_opacity); float b_b = smoothstep(0.85, 0.95, abs(sin(2.1 + uv.x * (resolution.x * 3.14159265)))); b = mix(b, b * b_b, grille_opacity); } // Apply the grille to the texture's color channels and apply Brightness. Since the grille and the scanlines (below) make the image very dark you // can compensate by increasing the brightness. text.r = clamp(r * brightness, 0.0, 1.0); text.g = clamp(g * brightness, 0.0, 1.0); text.b = clamp(b * brightness, 0.0, 1.0); // Scanlines are the horizontal lines that make up the image on a CRT monitor. // Here we are actual setting the black gap between each line, which I guess is not the right definition of the word, but you get the idea float scanlines = 0.5; if (scanlines_opacity > 0.0) { // Same technique as above, create lines with sine and applying it to the texture. Smoothstep to allow setting the line size. scanlines = smoothstep(scanlines_width, scanlines_width + 0.5, abs(sin(uv.y * (resolution.y * 3.14159265)))); text.rgb = mix(text.rgb, text.rgb * vec3(scanlines), scanlines_opacity); } // Apply the banded noise. if (noise_opacity > 0.0) { // Generate a noise pattern that is very stretched horizontally, and animate it with noise_speed float noise = smoothstep(0.4, 0.5, noise(uv * vec2(2.0, 200.0) + vec2(10.0, (TIME * (noise_speed))) ) ); // We use roll_line (set above) to define how big the noise should be vertically (multiplying cuts off all black parts). // We also add in some basic noise with random() to break up the noise pattern above. The noise is sized according to // the resolution value set in the inspector. If you don't like this look you can // change \"ceil(uv * resolution) / resolution\" to only \"uv\" to make it less pixelated. Or multiply resolution with some value // greater than 1.0 to make them smaller. roll_line *= noise * scanlines * clamp(random((ceil(uv * resolution) / resolution) + vec2(TIME * 0.8, 0.0)).x + 0.8, 0.0, 1.0); // Add it to the texture based on noise_opacity text.rgb = clamp(mix(text.rgb, text.rgb + roll_line, noise_opacity), vec3(0.0), vec3(1.0)); } // Apply static noise by generating it over the whole screen in the same way as above if (static_noise_intensity > 0.0) { text.rgb += clamp(random((ceil(uv * resolution) / resolution) + fract(TIME)).x, 0.0, 1.0) * static_noise_intensity; } // Apply a black border to hide imperfections caused by the warping. // Also apply the vignette text.rgb *= border(uv); text.rgb *= vignette(uv); // Hides the black border and make that area transparent. Good if you want to add the the texture on top an image of a TV or monitor. if (clip_warp) { text.a = border(uv); } // Apply discoloration to get a VHS look (lower saturation and higher contrast) // You can play with the values below or expose them in the Inspector. float saturation = 0.5; float contrast = 1.2; if (discolor) { // Saturation vec3 greyscale = vec3(text.r + text.g + text.b) / 3.; text.rgb = mix(text.rgb, greyscale, saturation); // Contrast float midpoint = pow(0.5, 2.2); text.rgb = (text.rgb - vec3(midpoint)) * contrast + midpoint; } COLOR = text; }" [sub_resource type="ShaderMaterial" id=2] shader = SubResource( 1 ) shader_param/overlay = true shader_param/scanlines_opacity = 0.4 shader_param/scanlines_width = 0.25 shader_param/grille_opacity = 0.3 shader_param/resolution = Vector2( 768, 240 ) shader_param/pixelate = false shader_param/roll = true shader_param/roll_speed = 8.0 shader_param/roll_size = 15.0 shader_param/roll_variation = 1.8 shader_param/distort_intensity = 0.05 shader_param/noise_opacity = 0.4 shader_param/noise_speed = 5.0 shader_param/static_noise_intensity = 0.06 shader_param/aberration = 0.0 shader_param/brightness = 2.5 shader_param/discolor = true shader_param/warp_amount = 1.0 shader_param/clip_warp = false shader_param/vignette_intensity = 0.4 shader_param/vignette_opacity = 0.5 [sub_resource type="Environment" id=3] background_mode = 4 glow_enabled = true glow_intensity = 1.0 glow_strength = 1.15 glow_blend_mode = 0 [node name="RetroTerm" type="Control"] anchor_right = 1.0 anchor_bottom = 1.0 theme = ExtResource( 2 ) __meta__ = { "_edit_use_anchors_": false } [node name="ColorRect" type="ColorRect" parent="."] show_behind_parent = true anchor_right = 1.0 anchor_bottom = 1.0 color = Color( 0.156863, 0.156863, 0.156863, 1 ) __meta__ = { "_edit_use_anchors_": false } [node name="Menu" parent="." instance=ExtResource( 1 )] margin_left = 30.0 margin_top = 30.0 [node name="CanvasLayer" type="CanvasLayer" parent="."] [node name="ColorRect" type="ColorRect" parent="CanvasLayer"] modulate = Color( 0, 1, 0.4, 1 ) material = SubResource( 2 ) anchor_right = 1.0 anchor_bottom = 1.0 __meta__ = { "_edit_use_anchors_": false } [node name="WorldEnvironment" type="WorldEnvironment" parent="."] environment = SubResource( 3 )