cvr-props/Assets/automata/Lenia/lenia.shader

156 lines
3.9 KiB
GLSL

Shader "CrispyPin/Lenia"
{
Properties
{
_LastFrame ("Texture", 2D) = "white" {}
_GrowtCenter ("Growth fn center (mu)", Range(0, 1)) = 0.2
_GrowthWidth ("Growth fn width (sigma / std deviation)", Range(0, 1)) = 0.07
_Speed ("Speed factor", Range(0.001, 0.5)) = 0.1
}
SubShader
{
Tags { "RenderType"="Opaque" }
LOD 100
Pass
{
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
struct appdata
{
float4 vertex : POSITION;
float2 uv : TEXCOORD0;
};
struct v2f
{
float2 uv : TEXCOORD0;
float4 vertex : SV_POSITION;
};
sampler2D _LastFrame;
float _GrowtCenter;
float _GrowthWidth;
float _Speed;
v2f vert (appdata v)
{
v2f o;
o.vertex = UnityObjectToClipPos(v.vertex);
o.uv = v.uv;
return o;
}
float kernel(float p) {
float r = p / 8.0;
float k_sharpness = 28;
float k_offset = 0.435;
return exp(-((r - k_offset) * (r - k_offset)) * k_sharpness);
// float r = p / _Radius;
// // -- normal
// return exp(-((r - _KOffset)*(r - _KOffset)) * _KSharpness);
// -- example from the lenia paper
// if (r >= 1) return 0;
// const float alpha = 4;
// return exp(alpha - alpha/(4.0 * r * (1.0 - r)));
}
inline float activation(float neighbors) {
// return old_state * (neighbors > 2 && neighbors < 5) +
// ((1 - old_state) * neighbors == 3);
// const float sharpness = 1000.0;
// float x = neighbors - _GrowtCenter;
// return exp(-(x*x) * _GrowthWidth) * 2.0 - 1.0;
const float mu = _GrowtCenter;
const float sigma = _GrowthWidth;
const float u = neighbors;
return exp(-((u-mu) * (u-mu)) / (2 * sigma * sigma)) * 2.0 - 1.0;
}
inline half value(float2 center, float x, float y) {
return tex2D(_LastFrame, center + float2(x, y)).r;
}
fixed4 frag (v2f i) : SV_Target
{
if(_ProjectionParams.z > 1) discard;
const float resolution = 512.0;
const float d = 1.0 / resolution;
// Defines RADIUS Radius Kernel total_max
#include "lenia_generated_kernel.cginc"
float total = 0.0;
[unroll(RADIUS)]
for (int y = 0; y < Radius; y++) {
[unroll(RADIUS)]
for (int x = 1; x <= Radius; x++) {
const float xx = (float)x * d;
const float yy = (float)y * d;
total += value(i.uv, xx, yy) * Kernel[y][x-1];
total += value(i.uv, -yy, xx) * Kernel[y][x-1];
total += value(i.uv, -xx, -yy) * Kernel[y][x-1];
total += value(i.uv, yy, -xx) * Kernel[y][x-1];
}
}
// */
/*
float total_max = 0;
float total = 0;
for (int x = -Radius; x <= Radius; x++) {
for (int y = -Radius; y <= Radius; y++) {
float dist = sqrt(x*x+y*y);
float kval = kernel(dist);
total_max += kval;
total += value(i.uv, x*d, y*d) * kval;
}
}
// */
float old_state = value(i.uv, 0.0, 0.0) ;
float count = total / total_max;
float state = activation(count) * _Speed + old_state;
state = clamp(state, 0, 1);
// kernel visualization: lookup table (SLOW)
// float k = 0;
// {
// float2 p = (i.uv - 0.5 ) * resolution;
// p = floor(p);
// if (p.x > 0 && p.y >= 0) {
// k = Kernel[p.y][p.x-1];
// } else if (p.x <= 0 && p.y > 0) {
// k = Kernel[-p.x][p.y-1];
// } else if (p.x < 0 && p.y <= 0) {
// k = Kernel[-p.y][-p.x-1];
// } else if (p.x >= 0 && p.y < 0) {
// k = Kernel[p.x][-p.y-1];
// }
// }
// kernel visualisation: real size
// float2 p = (i.uv - 0.5) * resolution;
// float k = kernel(length(p)) * (max(abs(p.x), abs(p.y)) <= _Radius);
// kernel visualisation: fill square
// float k = kernel(length(i.uv - 0.5) * _Radius * 2);
// float a = activation(i.uv.x);
// float4 col = float4(state, k, a, 1);
float4 col = float4(state, i.uv.x * state, i.uv.y * state, 1);
return col;
}
ENDCG
}
}
}